Unbeknownst

Menu Easier Level 1 Level 2 Level 3 Level 4 Level 5 Help More Puzzles

Find the value of each emoji from the sums of the rows and columns.

🥁

📗

😯

ROW SUM

14

😯

🥁

🥁

ROW SUM

13

😯

COLUMN SUM

11

😯

COLUMN SUM

14

📗

ROW SUM

12

COLUMN SUM

14

Answers:

😯 =

🥁 =

📗 =

Check

❌ At least one of your answers is not yet correct.
Try again.

Generate A New Level 1 Puzzle

Transum.org

This web site contains over a thousand free mathematical activities for teachers and pupils. Click here to go to the main page which links to all of the resources available.

Please contact me if you have any suggestions or questions.

Email address

Mathematicians are not the people who find Maths easy; they are the people who enjoy how mystifying, puzzling and hard it is. Are you a mathematician?

Comment recorded on the 17 November 'Starter of the Day' page by Amy Thay, Coventry:

"Thank you so much for your wonderful site. I have so much material to use in class and inspire me to try something a little different more often. I am going to show my maths department your website and encourage them to use it too. How lovely that you have compiled such a great resource to help teachers and pupils.
Thanks again"

Comment recorded on the 28 May 'Starter of the Day' page by L Smith, Colwyn Bay:

"An absolutely brilliant resource. Only recently been discovered but is used daily with all my classes. It is particularly useful when things can be saved for further use. Thank you!"

Each month a newsletter is published containing details of the new additions to the Transum website and a new puzzle of the month.

The newsletter is then duplicated as a podcast which is available on the major delivery networks. You can listen to the podcast while you are commuting, exercising or relaxing.

Transum breaking news is available on Twitter @Transum and if that's not enough there is also a Transum Facebook page.

Featured Activity

Car Park Puzzle

Car Park Puzzle

Can you get your car out of the very crowded car park by moving other cars forwards or backwards? There are five levels of increasing difficulty and the interactive interface makes this a fun problem solving exercise.

Answers

There are answers to this exercise but they are available in this space to teachers, tutors and parents who have logged in to their Transum subscription on this computer.

A Transum subscription unlocks the answers to the online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum Topic pages and the facility to add to the collection themselves.

Subscribers can manage class lists, lesson plans and assessment data in the Class Admin application and have access to reports of the Transum Trophies earned by class members.

If you would like to enjoy ad-free access to the thousands of Transum resources, receive our monthly newsletter, unlock the printable worksheets and see our Maths Lesson Finishers then sign up for a subscription now:

Subscribe

Go Maths

Learning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. The Go Maths main page links to more activities designed for students in upper Secondary/High school.

Teachers

If you found this activity useful don't forget to record it in your scheme of work or learning management system. The short URL, ready to be copied and pasted, is as follows:

Alternatively, if you use Google Classroom, all you have to do is click on the green icon below in order to add this activity to one of your classes.

It may be worth remembering that if Transum.org should go offline for whatever reason, there are mirror site at Transum.info that contains most of the resources that are available here on Transum.org.

When planning to use technology in your lesson always have a plan B!

Ann, London

Monday, May 3, 2021

"Window View is another fabulous Transum activity for creating and solving Simultaneous Equations with only two variables:
https://transum.org/go/?Num=214."

Wesley Primary, Twitter

Saturday, June 11, 2022

"

"

Transum.org is a proud supporter of the kidSAFE Seal Program

© Transum Mathematics :: This activity can be found online at:
www.Transum.org/go/?Num=906

Description of Levels

Close

Close

Sum of the Signs - A much easier puzzle if you are finding Unbeknownst too difficult.

Level 1 - 3 unknowns. Solution could start with 2 simultaneous equations

Level 2 - 4 unknowns. Solution could start with 2 simultaneous equations

Level 3 - 4 unknowns. Solution could start with 3 simultaneous equations

Level 4 - 4 unknowns. Solution could start with 4 simultaneous equations

Level 5 - 5 unknowns. Solution could start with 4 simultaneous equations

Simultaneous Equations - You can practice solving simultaneous equations with this set of exercises.

More Puzzles - For more challenges and the opportunity to collect more trophies.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Log in Sign up

Curriculum Reference

See the National Curriculum page for links to related online activities and resources.

Hints

You will need pen or pencil and paper to do some working out.

The puzzles can be solved using algebra. Here is an example:

Example

Let s represent the value of the star.

Let b represent the value of the ball.

Let f represent the value of the flower.

From the bottom row f + 2s = 16

From the centre column 2f + s = 17

You now have two simultaneous equations. Double the first equation to give a third:

2f + 4s = 32

Subtract the second equation from the third:

3s = 15

Divide both sides of this equation by 3.

s = 5

So the value of the star is 5 and this can be sudstituted in the first equation.

f + 2 × 5 = 16

f + 10 = 16

f = 6

So the value of the flower is 6

These two values can be substituted into an equation obtained from the first row to find that the value of the ball is 7.

You can practice solving simultaneous equations here: https://Transum.org/go/?Num=100.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Log in Sign up

Close

Close