\( \frac{x^6}{x^3} \equiv x^2\)
\(x^8 \div x^4 \equiv x^2\)
\(x^2 \times x^3 \equiv x^6\)
\( (x^3)^4 \equiv x^{12}\)
\( \frac{x^7}{x^3} \equiv x^4\)
\(x^8 \div x^5 \equiv x^3\)
\(x^2 \times x^3 \equiv x^5\)
\( \frac{x^3 + x^2}{x} \equiv x^2 + x\)
\( \frac{x^4}{x^8} \equiv x^{-4}\)
\( \frac{1}{x^{-1}} \equiv x \)
\( \frac{1}{x^5} \equiv x^{-5} \)
\(x^{\frac12} \equiv \frac{x}{2}\)
\(x^{\frac32} \equiv x\sqrt{x} \)
\(64^{\frac12} \equiv 32\)
\( 25^{-\frac12} \equiv \frac15\)
\((-1000)^\frac13 \equiv 10^{-1}\)
\( x^{\frac12} + x^{\frac12} = 2\sqrt{x} \)
\( ( \sqrt{x})^4 \equiv x^2 \)
\(2^x + 2^x \equiv 2^{x+1}\)
\( x^{a-b} \times x^{b-a} \equiv 1 \)
\( 8^{x} \equiv 4^{2x} \)
\( \frac{x^{\frac52}}{\sqrt{x}} \equiv x^5\)
\( (2xy^3)^4 \equiv 2x^4y^{12}\)
\( (8x^3y^6)^\frac13 \equiv 2xy^2\)
\( \frac{x^3 + x^5}{x^4} \equiv x^{-1} + x\)
\( (x^2 + y^3)^2 \equiv x^4 + y^6 \)
Cut out the cards above. Sort them into two piles depending on whether they are true of false.