Indices True False Cards

\( (x^3)^4 \equiv x^7\)

\( \frac{x^6}{x^3} \equiv x^2\)

\(x^8 \div x^4 \equiv x^2\)

\(x^2 \times x^3 \equiv x^6\)

\( (x^3)^4 \equiv x^{12}\)

\( \frac{x^7}{x^3} \equiv x^4\)

\(x^8 \div x^5 \equiv x^3\)

\(x^2 \times x^3 \equiv x^5\)

\( \frac{x^3 + x^2}{x} \equiv x^2 + x\)

\( 2^{-4} \equiv -16 \)

\( \frac{x^4}{x^8} \equiv x^{-4}\)

\( 3^{-3} \equiv -9\)

\( \frac{1}{x^{-1}} \equiv x \)

\( x^0 \equiv 0\)

\( \frac{1}{x^5} \equiv x^{-5} \)

\(x^3 + x^5 \equiv x^8\)

\(x^{\frac12} \equiv \frac{x}{2}\)

\(x^{\frac32} \equiv x\sqrt{x} \)

\(9^{\frac23} \equiv 6\)

\(64^{\frac12} \equiv 32\)

\( 25^{-\frac12} \equiv \frac15\)

\((-1000)^\frac13 \equiv 10^{-1}\)

\( x^{\frac12} + x^{\frac12} = 2\sqrt{x} \)

\( ( \sqrt{x})^4 \equiv x^2 \)

\(2^x + 2^x \equiv 2^{x+1}\)

\( x^{a-b} \times x^{b-a} \equiv 1 \)

\( 8^{x} \equiv 4^{2x} \)

\( \frac{x^{\frac52}}{\sqrt{x}} \equiv x^5\)

\( (2xy^3)^4 \equiv 2x^4y^{12}\)

\( (8x^3y^6)^\frac13 \equiv 2xy^2\)

\( \frac{x^3 + x^5}{x^4} \equiv x^{-1} + x\)

\( (x^2 + y^3)^2 \equiv x^4 + y^6 \)

Cut out the cards above. Sort them into two piles depending on whether they are true of false.

 

Apple

©1997-2025 WWW.TRANSUM.ORG